Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.562
Filtrar
1.
Viruses ; 16(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38543740

RESUMO

The history of virology, which is marked by transformative breakthroughs, spans microbiology, biochemistry, genetics, and molecular biology. From the development of Jenner's smallpox vaccine in 1796 to 20th-century innovations such as ultrafiltration and electron microscopy, the field of virology has undergone significant development. In 1898, Beijerinck laid the conceptual foundation for virology, marking a pivotal moment in the evolution of the discipline. Advancements in influenza A virus research in 1933 by Richard Shope furthered our understanding of respiratory pathogens. Additionally, in 1935, Stanley's determination of viruses as solid particles provided substantial progress in the field of virology. Key milestones include elucidation of reverse transcriptase by Baltimore and Temin in 1970, late 20th-century revelations linking viruses and cancer, and the discovery of HIV by Sinoussi, Montagnier, and Gallo in 1983, which has since shaped AIDS research. In the 21st century, breakthroughs such as gene technology, mRNA vaccines, and phage display tools were achieved in virology, demonstrating its potential for integration with molecular biology. The achievements of COVID-19 vaccines highlight the adaptability of virology to global health.


Assuntos
Neoplasias , Vírus , Humanos , Vacinas contra COVID-19 , Vírus/genética , Biologia Molecular , Microscopia Eletrônica , Virologia/história
2.
Virology ; 594: 110049, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38527382

RESUMO

The Second International Conference of the World Society for Virology (WSV), hosted by Riga Stradins University, was held in Riga, Latvia, on June 15-17th, 2023. It prominently highlighted the recent advancements in different disciplines of virology. The conference had fourteen keynote speakers covering diverse topics, including emerging virus pseudotypes, Zika virus vaccine development, herpesvirus capsid mobility, parvovirus invasion strategies, influenza in animals and birds, West Nile virus and Marburg virus ecology, as well as the latest update in animal vaccines. Discussions further explored SARS-CoV-2 RNA replicons as vaccine candidates, SARS-CoV-2 in humans and animals, and the significance of plant viruses in the 'One Health' paradigm. The presence of the presidents from three virology societies, namely the American, Indian, and Korean Societies for Virology, highlighted the event's significance. Additionally, past president of the American Society for Virology (ASV), formally declared the partnership between ASV and WSV during the conference.


Assuntos
Vacinas contra Influenza , Saúde Única , Vírus , Infecção por Zika virus , Zika virus , Animais , Humanos , RNA Viral , Virologia
3.
J Virol ; 98(3): e0179823, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38376258

RESUMO

Although antiretroviral therapy (ART) is effective at suppressing HIV replication, a viral reservoir persists that can reseed infection if ART is interrupted. Curing HIV will require elimination or containment of this reservoir, but the size of the HIV reservoir is highly variable between individuals. To evaluate the size of the HIV reservoir, several assays have been developed, including PCR-based assays for viral DNA, the intact proviral DNA assay, and the quantitative viral outgrowth assay (QVOA). QVOA is the gold standard assay for measuring inducible replication-competent proviruses, but this assay is technically challenging and time-consuming. To begin progress toward a more rapid and less laborious tool for quantifying cells infected with replication-competent HIV, we developed the Microwell Outgrowth Assay, in which infected CD4 T cells are co-cultured with an HIV-detecting reporter cell line in a polydimethylsiloxane (PDMS)/polystyrene array of nanoliter-sized wells. Transmission of HIV from infected cells to the reporter cell line induces fluorescent reporter protein expression that is detected by automated scanning across the array. Using this approach, we were able to detect HIV-infected cells from ART-naïve people with HIV (PWH) and from PWH on ART with large reservoirs. Furthermore, we demonstrate that infected cells can be recovered from individual rafts and used to analyze the diversity of viral sequences. Although additional development and optimization will be required for quantifying the reservoir in PWH with small latent reservoirs, this assay may be a useful prototype for microwell assays of infected cells.IMPORTANCEMeasuring the size of the HIV reservoir in people with HIV (PWH) will be important for determining the impact of HIV cure strategies. However, measuring this reservoir is challenging. We report a new method for quantifying HIV-infected cells that involves culturing cells from PWH in an array of microwells with a cell line that detects HIV infection. We show that this approach can detect rare HIV-infected cells and derive detailed virus sequence information for each infected cell.


Assuntos
Infecções por HIV , Virologia , Humanos , Linfócitos T CD4-Positivos , Linhagem Celular , DNA Viral , Infecções por HIV/virologia , Provírus/genética , Carga Viral , Latência Viral , Virologia/métodos
5.
J Virol ; 98(3): e0156323, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38323811

RESUMO

Macrophages are important target cells for diverse viruses and thus represent a valuable system for studying virus biology. Isolation of primary human macrophages is done by culture of dissociated tissues or from differentiated blood monocytes, but these methods are both time consuming and result in low numbers of recovered macrophages. Here, we explore whether macrophages derived from human induced pluripotent stem cells (iPSCs)-which proliferate indefinitely and potentially provide unlimited starting material-could serve as a faithful model system for studying virus biology. Human iPSC-derived monocytes were differentiated into macrophages and then infected with HIV-1, dengue virus, or influenza virus as model human viruses. We show that iPSC-derived macrophages support the replication of these viruses with kinetics and phenotypes similar to human blood monocyte-derived macrophages. These iPSC-derived macrophages were virtually indistinguishable from human blood monocyte-derived macrophages based on surface marker expression (flow cytometry), transcriptomics (RNA sequencing), and chromatin accessibility profiling. iPSC lines were additionally generated from non-human primate (chimpanzee) fibroblasts. When challenged with dengue virus, human and chimpanzee iPSC-derived macrophages show differential susceptibility to infection, thus providing a valuable resource for studying the species-tropism of viruses. We also show that blood- and iPSC-derived macrophages both restrict influenza virus at a late stage of the virus lifecycle. Collectively, our results substantiate iPSC-derived macrophages as an alternative to blood monocyte-derived macrophages for the study of virus biology. IMPORTANCE: Macrophages have complex relationships with viruses: while macrophages aid in the removal of pathogenic viruses from the body, macrophages are also manipulated by some viruses to serve as vessels for viral replication, dissemination, and long-term persistence. Here, we show that iPSC-derived macrophages are an excellent model that can be exploited in virology.


Assuntos
Vírus da Dengue , HIV-1 , Células-Tronco Pluripotentes Induzidas , Macrófagos , Modelos Biológicos , Orthomyxoviridae , Virologia , Animais , Humanos , Diferenciação Celular/genética , HIV-1/crescimento & desenvolvimento , HIV-1/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/virologia , Orthomyxoviridae/crescimento & desenvolvimento , Orthomyxoviridae/fisiologia , Pan troglodytes , Vírus da Dengue/crescimento & desenvolvimento , Vírus da Dengue/fisiologia , Fibroblastos/citologia , Monócitos/citologia , Replicação Viral , Citometria de Fluxo , Perfilação da Expressão Gênica , Montagem e Desmontagem da Cromatina , Tropismo Viral , Virologia/métodos , Biomarcadores/análise , Biomarcadores/metabolismo
6.
J Virol ; 98(1): e0179123, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38168672

RESUMO

In the United States (US), biosafety and biosecurity oversight of research on viruses is being reappraised. Safety in virology research is paramount and oversight frameworks should be reviewed periodically. Changes should be made with care, however, to avoid impeding science that is essential for rapidly reducing and responding to pandemic threats as well as addressing more common challenges caused by infectious diseases. Decades of research uniquely positioned the US to be able to respond to the COVID-19 crisis with astounding speed, delivering life-saving vaccines within a year of identifying the virus. We should embolden and empower this strength, which is a vital part of protecting the health, economy, and security of US citizens. Herein, we offer our perspectives on priorities for revised rules governing virology research in the US.


Assuntos
Pesquisa Biomédica , Contenção de Riscos Biológicos , Virologia , Humanos , COVID-19 , Estados Unidos , Vírus , Pesquisa Biomédica/normas
7.
New Delhi; World Health Organization. Regional Office for South-East Asia; 2024. (SEA-Immun-150).
em Inglês | WHO IRIS | ID: who-376406

Assuntos
Virologia
8.
Nature ; 625(7994): 250-251, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38114828

Assuntos
Vírus , Bactérias , Virologia
10.
Viruses ; 15(12)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38140624

RESUMO

Norway is situated in a remote and sparsely inhabited part of the world with about 5 [...].


Assuntos
Virologia , Noruega , Virologia/tendências
11.
Lancet Infect Dis ; 23(12): 1338, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38006884

Assuntos
Virologia , Humanos
12.
Nature ; 622(7984): 705-706, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37853200
13.
Nature ; 621(7980): 661, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37730780

Assuntos
Vírus , Virologia
14.
Nature ; 620(7973): 249, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37542136
15.
Viruses ; 15(7)2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37515198

RESUMO

In this Special Issue of Viruses, we showcase some of the fascinating and diverse virology being undertaken in Canada that was presented at the 4th Symposium of the Canadian Society for Virology 2022 [...].


Assuntos
Vírus , Canadá , Vírus/genética , Virologia
16.
Nature ; 619(7968): 39-40, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37402798

Assuntos
Vírus , Virologia
19.
Vopr Virusol ; 67(6): 538-540, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-37264843

RESUMO

In No. 5, 2022 of the journal "Questions of Virology" in the section "Editorial concept" the article "130 years of virology" was published (Lvov D.K., Alkhovsky S.V., Zhirnov O.P. 130 years of virology. Questions of virology. 2022; 67(5): 357-384. DAY: https://doi.org/10.36233/0507-4088-140).The review presents the main stages of the formation and development of virology as a science in Russia with an emphasis on the most significant achievements of domestic virologists in the fight against viral infectious diseases of humans and animalsThe editorial office received the following reviews and reviews of the article.


Assuntos
Virologia , Humanos , Federação Russa/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...